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A
B

S
T

R
A

C
T

W
e use the eight year lightcurve database from

 the M
A

C
H

O
 (M

A
ssive C

om
pact H

alo O
bjects) project together w

ith infrared colors and

m
a

g
n

itu
d

e
s fro

m
 2

M
A

S
S

 (th
e

 T
w

o
 M

icro
n

 A
ll S

ky S
u

rve
y) to

 id
e

n
tify a

 sa
m

p
le

 o
f 2

2
,0

0
0

 lo
n

g
 p

e
rio

d
 va

ria
b

le
s in

 th
e

 L
a

rg
e

 M
agellanic

C
lo

u
d

 (re
fe

rre
d

 to
 h

e
re

a
fte

r a
s L

M
C

 L
P

V
s). A

 p
e

rio
d lu

m
in

o
sity d

ia
g

ra
m

 o
f th

e
se

 sta
rs re

ve
a

ls six w
elld

e
fin

e
d

 se
q

u
e

n
ce

s, in
 substantial

agreem
ent w

ith previous analyses of sam
ples from

 O
G

LE
 (O

ptical G
ravitational Le nsing E

xperim
ent). In our analysis w

e identify analogues

to
 g

a
la

ctic L
P

V
s in

 th
e

 L
M

C
 L

P
V

 sa
m

p
le

. W
e

 fin
d

 th
a

t carbond
o

m
in

a
te

d
 A

G
B

 sta
rs p

o
p

u
la

te
 o

n
ly tw

o
 o

f th
e

 se
q

u
e

n
ce

s, o
n

e
 o

f w
hich

in
clu

d
e

s th
e

 M
ira

 va
ria

b
le

s. T
h

e
 highlu

m
in

o
sity e

n
d

 o
f th

e
 sa

m
e

 tw
o

 seq
u

e
n

ce
s a

re
 a

lso
 th

e
 lo

ca
tio

n
 o

f th
e

 o
n

ly sta
rs w

ith
 J 

_
 K

s >
 2,

indicating that they are enshrouded in dust. T
he unknow

n m
echanism

 that produces the variability of the last sequence – those stars w
ith

lo
n

g
 se

co
n

d
a

ry p
e

rio
d

s –
 p

ro
d

u
ce

s d
i_

e
re

n
t m

o
rp

h
o

lo
g

y in
 th

e
 period

lu
m

in
o

sity d
ia

g
ra

m
 th

a
n

 w
h

a
t is se

e
n

 in
 th

e
 first fo

u
r sequences,

w
h

ich
 a

re
 th

o
u

g
h

t to
 b

e
 ca

u
se

d
 b

y p
u

lsa
tio

n
. In

 p
a

rticu
la

r, th
e

 la
st se

q
u

e
n

ce
 e

xte
n

d
s to

 lo
w

e
r lu

m
in

o
sity R

G
B

 sta
rs a

n
d

 th
e

 lum
inosity



fu
n

ctio
n

 d
o

e
s n

o
t p

e
a

k a
m

o
n

g
 th

e
 A

G
B

 stars . W
e

 p
o

in
t o

u
t se

ve
ra

l fe
a

tu
re

s w
h

ich
 w

ill co
n

stra
in

 n
e

w
 m

o
d

e
ls o

f th
e

 period
lum

inosity

sequences.
S

ubject headings: galaxies: individual (LM
C

) —
 stars: A

G
B

 and postA
G

B
 —

 stars:
variables: other

1. Introduction

L
o

n
g

 p
e

rio
d

 va
ria

b
le

s (L
P

V
s) a

re
 g

ia
n

t sta
rs th

a
t p

u
lsa

te
 w

ith
 p

e
rio

d
s ra

n
g

in
g

 fro
m

 w
e

e
ks to

 ye
a

rs. T
h

e
 p

ro
to

typ
ica

l ca
se

 is M
ira

(O
m

icron) C
e

ti, fro
m

 w
h

ich
 a

ll large
am

plitude (>
 2 .5

 m
agnitudes in

 V
) regular L

P
V

s ta
ke

 th
e

ir n
a

m
e

. L
P

V
s a

re
 typically asym

pt o
tic giant

b
ra

n
ch

 (A
G

B
) sta

rs th
a

t a
re

 in
 th

e
 la

te
 sta

g
e

s o
f ste

lla
r e

vo
lu

tio
n

, w
h

e
re

 th
e

 p
u

lsa
tio

n
 m

e
ch

a
n

ism
(s) –

 a
n

d
 th

e
 re

la
tio

n
sh

ip
s betw

een

pulsation, m
ass loss, and the eventual ejection of the stellar envelope as the star becom

es a planetary nebula – are all poorly understood.

D
uring th

is relatively short A
G

B
 phase, stars m

anage to
 lo

se
 a significant fraction o

f their total m
ass, returning processed m

aterial to
 the

in
te

rste
lla

r m
e

d
iu

m
. A

 q
u

a
lita

tive
 p

ictu
re

 o
f 

th
e

 m
ass lo

ss 
p

ro
ce

ss in
vo

ke
s instabiliti e

s 
in

 
th

e
 h

e
liu

m
 a

n
d

 h
yd

ro
g

e
n

 b
u

rn
in

g
 shells

su
rro

u
n

d
in

g
 th

e
 d

e
g

e
n

e
ra

te
 co

re
 o

f th
e

 sta
r. T

h
is p

ro
vid

e
s th

e
 e

n
e

rg
y fo

r a
 va

rie
ty o

f ste
lla

r p
u

lsa
tio

n
 m

o
d

e
s, ca

u
sin

g
 sh

o
cks in

 the

e
n

ve
lo

p
e

 w
h

ich
 lift m

a
te

ria
l h

ig
h

 in
 th

e
 a

tm
o

sp
h

e
re

. T
h

e
 te

m
p

e
ra

tu
re

 is th
e

n
 lo

w
 e

n
o

u
g

h
 to

 a
llo

w
 th

e
 fo

rm
a

tio
n

 o
f d

u
st, w

h
ich

 is

subsequently e
je

cte
d

 fro
m

 th
e

 a
tm

o
sp

h
e

re
 b

y ra
d

ia
tio

n
 p

re
ssu

re
 fro

m
 th

e
 lu

m
in

o
u

s co
re

. P
u

lsa
tio

n
s –

 w
h

ich
 a

_
e

ct b
o

th
 th

e
 ra

d
iu

s and

tem
perature of the star – together w

ith the shocks and dust form
ation, c om

bine to produce significant photom
etric variability.

T
he study of LP

V
s has undergone a recent revival w

ith the advent of surveys producing large catalogs of variable stars. G
ravitational

m
icrolensing surveys, such as O

G
LE

 – P
aczynski et al. (1994) and O

G
LE

 II – U
dalski, K

ubiak, &
 S

zym
anski (1997); E

R
O

S
 – A

ubourg et al.

(1
9

9
5

); M
A

C
H

O
 –

 A
lco

ck e
t a

l. (1
9

9
7

); a
n

d
 M

O
A

 –
 B

o
n

d
 e

t a
l. (2

0
0

1
) re

q
u

ire
 th

a
t m

illions o
f sta

rs b
e

 im
a

g
e

d
 nightly. T

h
e

 variable star

catalogs that arise as a byproduct contain thousands of stars w
ith light curves covering several thousand days.

A
s n

o
te

d
 b

y C
o

o
k e

t a
l. (1

9
9

6
) th

e
 lo

n
g

 p
e

rio
d

 va
ria

b
le

s in
 th

e
 M

A
C

H
O

 d
a

ta
b

a
se

 fo
rm

 five
 p

a
ra

lle
l se

q
u

e
n

ce
s in

 period
lum

inosity

space. W
ood et al. (1999) classified these and suggested possible underlying m

echanism
s for the five. O

ur use of infrared m
agnitudes in

th
e

 p
e

rio
dlu

m
in

o
sity re

la
tio

n
s sh

o
w

n
 in

 F
ig

u
re

 1
 re

ve
a

ls six se
q

u
e

n
ce

s. W
o

o
d

’s se
co

n
d

 se
q

u
e

n
ce

 (“B
” in

 h
is n

o
ta

tio
n

) is sp
lit in

to
 our

S
equences 2

 a
n

d
 3

. In
 term

s o
f o

u
r observed sequence s, W

ood e
t a

l. (1999) found that S
equence 4

 corresponds to
 M

ira type variables,

w
hich are theorized to be pulsating in the fundam

ental m
ode. H

igherorder pulsations are invoked to explain the shorter period sequences

(1,2, and 3). T
he sequence that w

as lon gerperiod and dim
m

er than the M
iras (our S

equence 5) show
ed light curves that suggested that all



of these variable stars w
ere eclipsing binaries. S

tars in the longest period sequence (S
equence 6) proved m

ore m
ysterious since the long

secondary periods of these stars could not be explained by radial pulsations – they are longer than the periods of M
iras, w

hich them
selves

are theorized to be pulsating in the fundam
ental m

ode. A
dditionally, they all exhibited m

ultiple periods w
ith the short period associated w

ith

W
ood’s S

equence “B
”. T

h
is prom

pted W
o

o
d

 e
t a

l. to
 propose th

a
t S

equence 6
 w

a
s caused b

y th
e

 eclipse o
f th

e
 A

G
B

 sta
r b

y a
 cloud of

m
aterial around an unseen com

panion.

M
o

re
 re

ce
n

t stu
d

ie
s u

sin
g

 O
G

LE
II d

a
ta

 [Ita
 e

t a
l. (2

0
0

2
); K

iss &
 B

e
d

d
in

g
 (2

0
0

3
); Ita

 e
t a

l. (2
0

0
4

); K
iss &

 B
e

d
d

in
g

 (2
0

0
4

)] have

extended th
e

 w
o

rk o
n

 th
e

 period
lum

inosity sequences. T
h

e
se

 a
u

th
o

rs sh
o

w
e

d
 th

a
t th

e
 u

se
 o

f infrared m
agnitudes fo

r lum
inosity reveals

tw
o

 se
q

u
e

n
ce

s fro
m

 th
e

 o
rig

in
a

l se
co

n
d

 sequence. F
u

rth
e

r, th
e

ir d
a

ta
 sh

o
w

 tha
t W

o
o

d
’s first tw

o
 sequences (o

u
r first th

re
e

 sequences)

exhibit a split in lum
inosity due to the contribution of red giant branch (R

G
B

) stars.

In this paper w
e use the full eightyear M

A
C

H
O

 database to re exam
ine the LP

V
 period

lum
inosity relations. M

A
C

H
O

 observations have

several advantages over previous studies: the colors of M
A

C
H

O
 light curves yield superior sam

pling of photom
etric variability of R

G
B

 stars,

and the tim
e baseline of the light curves is tw

ice as long (eight years com
pared to four years).

2. D
ata

2.1. T
he M

A
C

H
O

 LM
C

 V
ariable S

tar D
atabase

T
h

e
 M

A
C

H
O

 p
ro

je
ct (A

lco
ck e

t a
l. 1

9
9

7
) co

m
p

rise
s e

ig
h

t ye
a

rs o
f observations o

f th
e

 L
a

rg
e

 a
n

d
 S

m
a

ll M
a

g
e

lla
n

ic C
lo

u
d

s a
n

d
 the

M
ilky W

ay B
ulge. D

ata w
ere taken sim

ultaneously in a red and a blue fi lter. In this w
ork w

e only use data from
 the Large M

agellanic C
loud.

V
a

ria
b

le
 sta

r candidates w
e

re
 ch

o
se

n
 fro

m
 th

e
 fu

ll d
a

ta
b

a
se

 o
f se

ve
ra

l m
illio

n
 sta

rs if th
e

 ce
n

tra
l 8

0
 p

e
rce

n
t o

f p
o

in
ts in

 th
e

 lig
h

t curve

failed to fit a constant m
agnitude in a

 _squared
 test. T

his criterion resulted in the 207,632 variable candidates that appear in the M
A

C
H

O

variable star catalog (A
lcock et al. 2003).

M
A

C
H

O
 em

ployed a nonparam
etric phasing technique (R

iem
ann 1994) to find periods for each candidate variable star. D

ata from
 the

re
d

 a
n

d
 th

e
 b

lu
e

 lig
h

t cu
rve

s w
e

re
 a

n
a

lyze
d

 independently, a
n

d
 a

 p
e

rio
d

 a
n

d
 am

plitude fo
r e

a
ch

 va
ria

b
le

 candidate w
e

re
 fo

u
n

d
 in

 each

dataset. T
here is no substantial di_erence betw

een the periods found, but a plot of the red versus the blue am
plitu

des show
s a bias tow

ard

la
rg

e
r a

m
p

litu
d

e
s in

 th
e

 b
lu

e
. W

e
 a

d
o

p
t th

e
 b

lu
e

 p
e

rio
d

s a
n

d
 a

m
p

litu
d

e
s so

 th
a

t th
e

 w
id

e
r sp

re
a

d
 in

 a
m

p
litu

d
e

 w
ill a

llo
w

 u
s to

 better



discrim
inate typ

e
s o

f L
M

C
 L

P
V

s. T
h

e
 period

fin
d

in
g

 algorithm
 te

n
d

s to
 a

lia
s n

o
isy d

a
ta

 a
n

d
 sta

rs w
ith

 ch
a

o
tic variability. T

h
u

s, sta
rs w

ith

period aliases at the total survey length, one year, and m
ultiples of one day, in particular up

to the fourth m
ultiple and dow

n to one
ninth (

1

9

) of a day, w
ere all rem

oved from
 the catalog. N

ote

th
a

t th
e

se
 alia

s cu
ts re

su
lt in

 b
la

n
k ve

rtica
l strip

e
s in

 th
e

 period
lu

m
in

o
sity d

ia
g

ra
m

 (F
ig

u
re

 1
). O

n
ly 5

2
 p

e
rce

n
t o

f th
e

 L
P

V
s h

a
ve

 w
ell-

determ
ined periods, a total of 21,441 stars. W

e are currently analyzing the 
_

 20 , 000 LP
V

s w
ith poorly determ

ined periods w
ith the goal of

understanding the m
ultiperiodic nature of these stars.

T
he am

plitudes in the M
A

C
H

O
 database are determ

ined from
 the di_erence betw

een the m
edian of five points nearest the m

axim
um

and five points nearest the m
inim

um
 in the light curve. A

 m
odel lig ht curve is used to identify the tim

es of m
axim

um
 and m

inim
um

 light, so

stars that are not w
ell fit by the m

odel w
ill tend to average to zero am

plitude. T
hus, noisy or chaotic data w

ill not be assigned m
eaningful

am
plitudes.

2.2. 2M
A

S
S

 P
hotom

etry

T
he T

w
o M

icron A
ll S

ky S
urvey (2M

A
S

S
) m

easured J, H
, and K

s m
agnitudes for approxim

ately half a billion objects over the entire sky

(C
utri e

t al. 2003). T
he sky coverage, resolution, and sensitivity o

f 2M
A

S
S

 m
ake it a

 very useful source of infrared m
agnitudes. W

e
 have

m
atched the M

A
C

H
O

 and 2M
A

S
S

 data by position for LM
C

 LP
V

s w
ith w

ell determ
ined periods. S

ince the 2M
A

S
S

 m
agnitudes w

ere taken at

random
 phases w

e expect scatter in the K
m

agnitudes from
 the intrinsic variability of these LP

V
s. A

lthough m
ost of the st ars in our sam

ple

are sm
all am

plitude pulsators and contribute a negligible am
ount of scatter in the K

s band, som
e of the stars that m

ake up S
equence 4 are

M
ira variables. M

iras are the largest am
plitude LP

V
s and have a typical K

am
plitude of 

_
 0.6 (W

ood 2000). T
hus the 2M

A
S

S
 m

agnitudes of

the largest am
plitude stars m

ay deviate from
 the m

ean by as m
uch as 0.3 m

ags. W
e accept this as a source of scatter, and, assum

ing all

LM
C

 stars are at the sam
e distance, w

e use the 2M
A

S
S

 K
s m

agnitude as our prim
ary lum

ino
sity indicator.



Infrared m
agnitudes can also be used to distinguish the state of late A

G
B

 stars. A
fter evolving through the R

G
B

 and horizontal branch,

stars begin to ascend the A
G

B
 w

ith a high O
/C

 ratio in their atm
ospheres. T

hese oxygen
rich A

G
B

 stars in clude both the socalled early A
G

B

sta
rs a

n
d

 A
G

B
 sta

rs th
a

t h
a

ve
 h

a
d

 th
e

ir first th
e

rm
a

l p
u

lse
s. L

o
w

 m
a

ss sta
rs w

ill re
m

a
in

 o
n

 th
e

 A
G

B
 lo

n
g

 e
n

o
u

g
h

 th
a

t th
e

rm
a

l pulses

initiate the “third dredgeup”, the deepening of their convection zones dow
n into m

aterial  enriched in 12C
. T

he spectral type then changes to

a carbon star. T
he objective

prism
 survey of the LM

C
 by K

ontizas et al. (2001) show
ed that carbon stars appear on the infrared colorcolor

diagram
 in a red tail running from

 the stellar locus. Infrared co lor cuts of J
_ H

>
0.89 and H

_ K
s >

0 .32 isolated 83%
 of the carbon stars in their

sam
ple, w

ith only a nine percent contam
ination rate. A

 single color cut in J
_ K

s can also select these stars since it is perpendicular to the tail

o
f ca

rb
o

n
 sta

rs; th
e

 re
su

lt is a
 sa

m
p

le
 th

a
t is le

ss co
m

p
le

te
 b

u
t a

lso
 h

a
s le

ss co
n

ta
m

in
a

tio
n

. In
 a

d
d

itio
n

, th
e

 2
M

A
S

S
 color m

agnitude
d

ia
g

ra
m

 o
f th

e
 L

M
C

 (N
iko

la
e

v &
 W

e
in

b
e

rg
 2

0
0

0
) sh

o
w

s a
 cle

a
r d

ivisio
n

 a
t J

_ K
s =

 1 .4
 d

u
e

 to
 ca

rb
o

n
 sta

rs. In
 th

is p
a

p
e

r w
e

 w
ill draw

particular attention to
 LP

V
s near this color boundary, w

ith the caveat that w
e

 are m
issing som

e tw
enty percent o

f the carbon stars, those
that are w

arm
 and hence bluer than J

_ K
s =

 1.4.

N
ikolaev &

 W
einberg (2000) also find a

 population of very red stars, those w
ith J

_
 K

s >
2, that lie along the reddening vector from

 the

carbon stars and are located in dusty regions of the LM
C

. T
hey propose that these stars are surrounded by a dusty circum

st ellar envelope.

B
oth A

G
B

 stars and at least a few
 protostars are know

n to lie in this region. A
lthough such dusty LP

V
 are likely to be very late A

G
B

 stars,

pinp
o

in
tin

g
 th

e
 e

xa
ct e

vo
lu

tio
n

a
ry sta

te
 o

f th
e

se
 la

tte
r sta

rs w
ill re

q
u

ire
 a

 b
e

tte
r u

n
d

e
rsta

n
d

in
g

 o
f th

e
 co

n
n

e
ctio

n
 b

e
tw

e
e

n
 m

assloss,

pulsation, and the late stages of A
G

B
 star evolution.

3. D
iscussion

P
eriodlum

inosity relations for variable stars in the LM
C

 are show
n in F

igure 1. T
he tw

o C
epheid sequences are clearly visible betw

een

0
 <

lo
g

 P
 <

1
 an d

 1
3

 <
K

s <
1

6
. W

h
e

n
 p

lo
tte

d
 in

 K
s, a

s sh
o

w
n

 h
e

re
, it is e

vid
e

n
t th

a
t W

o
o

d
’s o

rig
in

a
l se

q
u

e
n

ce
s sp

lit in
 b

o
th

 p
e

rio
d

 and

lum
inosity. It also appears that the low

 lum
inosity ends of the first three sequences are o_set to

 longer periods. T
hese e_ects have been

previously seen in O
G

LE
 II data; K

iss &
 B

edding (2003), Ita et al. (2004). In this w
ork w

e w
ill refer to each sequence by num

ber as denoted

in
 F

ig
u

re
 1

. T
h

e
 lo

w
e

r lu
m

in
o

sity sta
rs in

 S
e

q
u

e
n

ce
s 1

, 2
, a

n
d

 3
 h

a
ve

 b
e

e
n

 id
e

n
tifie

d
 a

s R
G

B
 sta

rs (K
iss &

 B
e

d
d

in
g

 200
4

) u
sin

g
 an

analysis of the second derivative of the lum
inosity function. T

he num
ber of stars located above and below

 the tip of the R
G

B
 (K

s =
 12.3 ± 0.1

for the LM
C

, N
ikolaev &

 W
einberg (2000)) in each pulsation sequence are given in T

able 1.



3.1. C
onnections B

etw
een LM

C
 and G

alactic LP
V

s

G
alactic LP

V
s are identified prim

arily in T
he G

eneral C
atalog of V

ariable S
tars (K

holopov et al. 1996) w
hich has traditionally classified

LP
V

s by their V
 band behavior. T

he classification schem
e, tabulated in T

able 2, seperates LP
V

s into M
ira types and classes of sem

i regular

(S
R

) va
ria

b
le

s. M
ira

 va
ria

b
le

s a
re

 d
e

fin
e

d
 a

s th
o

se
 p

u
lsa

tin
g

 w
ith

 a
 p

e
rio

d
 g

re
a

te
r th

a
n

 8
0

 d
a

ys a
n

d
 a

n
 a

m
p

litu
d

e
 o

f a
t le

a
st 2

.5
 in

 V
.

W
h

e
re

a
s M

ira
 va

ria
b

le
s sh

o
w

 re
g

u
la

r a
n

d
 stro

n
g

 periodicity, o
n

e
 w

o
u

ld
 im

a
g

in
e

 th
a

t “sem
i re

g
u

la
r” va

ria
b

le
s w

o
u

ld
 h

a
ve

 w
e

a
k o

r poorly

d
e

fin
e

d
 p

e
rio

d
s. In

d
e

e
d

, S
R

b
 sta

rs h
a

ve
 p

o
o

rly e
xp

re
sse

d
 p

e
rio

d
icity, o

r m
u

ltip
le

 p
e

rio
d

s, o
r o

n
ly o

cca
sio

n
a

l p
e

rio
d

icity, o
r chaotic

p
u

lsa
tio

n
. H

o
w

e
ve

r, S
R

a
 sta

rs a
re

 n
o

t n
e

ce
ssa

rily sem
ire

g
u

la
r a

t a
ll; th

e
y a

re
 sim

ila
r to

 M
ira

s b
u

t w
ith

 sm
a

lle
r a

m
p

litu
d

e
s (Lebzelter,

S
chultheis, &

 M
elchior 2002).

D
u

e
 to

 th
e

 e
m

p
irica

l n
a

tu
re

 o
f th

e
 G

C
V

S
 cla

ssifica
tio

n
 syste

m
, co

n
n

e
ctio

n
s d

ra
w

n
 to

 th
e

 o
b

se
rve

d
 L

M
C

 L
P

V
 period

lum
inosity

sequences are often
 not sim

ple or direct. H
ow

ever, connections can be m
ade; Lebzelter et al. (2002) find that M

iras in the G
alaxy and in

th
e

 M
a

g
e

lla
n

ic C
lo

u
d

s h
a

ve
 th

e
 sa

m
e

 period
lum

inosity relationship, im
p

lyin
g

 th
a

t th
e

 pulsation m
echanism

 is n
o

t stro
n

g
ly dependent on

m
etallicity.

F
igure 2 show

s LM
C

 LP
V

s of di_erent am
plitudes located in period

lum
inosity space, T

able 1 gives the m
ean and m

axim
um

 pulsation

am
plitudes for each sequence. T

here is only a sm
all di_erence betw

een our B
M

A
C

H
O

 am
plitudes and the V

 band am
plitudes used to classify

G
alactic variables. B

essell &
 G

erm
any (1999) found transform

ations from
 M

A
C

H
O

 m
agnitudes to C

ousins V
 and R

. F
or B

M
A

C
H

O
 _

 R
M

A
C

H
O

>
1. 0

V
 _ B

M
A

C
H

O
 =

 _ 0. 07 _ 0 .10(B
M

A
C

H
O

 _ R
M

A
C

H
O

) . (1)

T
he change in the am

plitude then, is due to color changes during the star’s variability cycle. In particular the change in the am
plitude

betw
een V

 and B
M

A
C

H
O

 is restricted to 10%
 of the color change in the M

A
C

H
O

 photom
etric system

. 1

W
ith reference to the LM

C
 LP

V
s in F

igure 2, S
equence 4 is com

posed on the long period side by M
iras. C

ioni et al. (2001) found that

higher am
plitude S

R
a stars lie on S

equence 4 w
ith the M

iras; low
 am

plitude S
R

as, on the other hand, lie on the shorter period sequences

(S
equences 1, 2, and 3). C

ioni et al. (2001) investigate stars from
 S

equence 6 and find that they are all m
ultiplyperiodic S

R
b stars. W

ood et



a
l. (1

9
9

9
) fo

u
n

d
 th

a
t th

e
 sh

o
rte

r p
e

rio
d

 o
f th

e
se

 sta
rs u

su
a

lly fe
ll o

n
 h

is se
q

u
e

n
ce

 “B
”, w

h
ich

 co
rre

sp
o

n
d

s to
 o

u
r S

equences 2
 a

n
d

 3.

A
lthough this w

ork did not identify any stars from
 S

equence 6 w
ith a prim

ary period on S
equence 1 this m

ay be caused selection e_ect due

to the sm
all am

plitude of pulsation on this sequence. U
nlike sequence 4, the highest am

plitude stars fall on the shorter period side of the

sequence.

T
he R

G
B

 stars at the low
 lum

inosity end of S
equences 1 and 2 are low

 am
plitude pulsators, and a sim

ilar set of stars is visible at the

base of the S
equence 6. T

he latter sequence’s stars are particularly interesting as their pulsation m
echanism

 rem
ains unknow

n. S
equence

6 is also notable for a significant num
ber of high am

plitude variables (1 <
B

am
p <

2.5).

3.2. C
olor and Lum

inosity F
unctions

F
igure 3 show

s LM
C

 LP
V

s of di_erent J
_

 K
s color located on the period

lum
i nosity diagram

; as discussed in 2.2, stars w
ith J 

_
 K

s >
 1. 4

are likely to be carbon stars, w
hile stars w

ith

§

J
_ K

s >
2 are likely obscured by dust. Interestingly, the m

ost heavily obscured stars lie only at the high lum
inosity end of S

equence 4 and are

M
ira types. T

he m
ajority of carbon stars lie at the high lum

inosity end of S
equences 3 and 4. S

equence 6 show
s that the low

er lum
inosity,

sm
a

ll a
m

p
litu

d
e

 p
u

lsa
to

rs visib
le

 in
 F

ig
u

re
 2

 a
lso

 h
a

ve
 b

lu
e

r co
lo

rs th
a

n
 th

e
 re

st o
f th

e
 se

q
u

e
n

ce
, a

g
a

in
 in

d
ica

tin
g

 a
 se

p
a

ra
te

 R
G

B

population.

T
he color m

agnitude diagram
s and lum

inosity functions for each sequence are show
n in

 F
igure 4; the lum

inosity functions are scaled

re
la

tive
 to

 th
e

 to
ta

l p
o

p
u

la
tio

n
 o

f sta
rs in

 e
a

ch
 sequence

. T
h

e
 b

a
ckg

ro
u

n
d

 d
istrib

u
tio

n
 in

 th
e

 colorm
a

g
n

itu
d

e
 d

ia
g

ra
m

 is fo
r th

e
 entire

M
A

C
H

O
 variable star catalog, w

hereas the background lum
inosity function is for all LM

C
 stars m

easured by 2M
A

S
S

 (N
ikolaev &

 W
einberg

2000).T
he “bum

ps” in
 the lum

inosity function for each sequence correspond to
 particular populations a

t di_erent stages o
f stellar evolution.

T
he tip of the R

G
B

 is the largest such bum
p, and w

as found by N
ikolaev &

 W
einberg (2000) to be K

s =
 12.3 ± 0.1. S

equences 1 and 2 show



a substantial contribution from
 the tip of the R

G
B

, w
hereas S

equences 3 and 4 are com
posed prim

arily of stars on the A
G

B
 (w

hich overlaps
w

ith the R
G

B
 at this m

agnitude). S
equences 1, 2, 3, and 4 all show

 a peak in the lum
inosity function at K

s _ 11.3; this peak in variable A
G

B

stars is not seen in the

S
in

ce
 w

e
 kn

o
w

 th
e

 typ
ica

l co
lo

r o
f A

G
B

 sta
rs, B

M
A

C
H

O
 _

 R
M

A
C

H
O

 _
 1

. 5
 (A

lco
ck e

t a
l. 1

9
9

9
), w

e
 n

o
te

 th
a

t V
 m

a
g

n
itu

d
e

s w
ill b

e
 _

 0
. 2

2
 b

rig
h

te
r th

a
n

 th
e

 B
M

A
C

H
O

m
agnitudes.

overall LM
C

 lum
inosity function (N

ikolaev &
 W

einberg 2000).

T
h

e
 typ

e
s o

f sta
rs in

 e
a

ch
 se

q
u

e
n

ce
 a

re
 o

b
ta

in
e

d
 b

y co
m

p
a

riso
n

 w
ith

 th
e

 colorm
a

g
n

itu
d

e
 d

ia
g

ra
m

 o
f th

e
 L

M
C

 fro
m

 N
iko

la
e

v &

W
e

in
b

e
rg

 (2
0

0
0

). S
e

q
u

e
n

ce
s 1

 a
n

d
 2

 h
a

ve
 sim

ila
r distributions in

clu
d

in
g

 a
 population a

t th
e

 tip
 o

f th
e

 R
G

B
 as w

e
ll a

s oxygen
rich

 A
G

B

stars. T
h

e
 sta

rs w
ith

 K
s <

 10. 5
 a

re
 young, m

assive, A
G

B
 stars; th

e
y a

re
 m

o
st com

m
only fo

u
n

d
 in

 S
equence 2. S

equences 3
 a

n
d

 4
 also

have sim
ilar populations, w

ith both oxygen
rich A

G
B

 stars and a large contribution from
 carbon stars. S

equence 4 extends further to the red
in

 J 
_ K

s , p
ro

b
a

b
ly d

u
e

 to
 d

u
st o

b
scu

ra
tio

n
 a

ro
u

n
d

 th
o

se
 sta

rs. T
h

e
re

 a
re

 ve
ry fe

w
 yo

u
n

g
, m

a
ssive

 A
G

B
 sta

rs in
 th

e
se

 sequences.

S
equence 5 is dom

inated by R
G

B
 stars, as can be seen from

 both its lum
inosity function and position in the colorm

agnitude diagram
. T

his

is e
xp

e
cte

d
 if it is co

m
p

o
se

d
 o

f eclipsing binaries. B
o

th
 S

equence 5
 a

n
d

 6
 la

ck h
ig

h
 lum

inosity youn
g, m

assive A
G

B
 sta

rs a
n

d
 th

e
 A

G
B

dom
inated population th

a
t produces th

e
 significant p

e
a

k in
 th

e
 lum

inosity fu n
ctio

n
 a

t K
s _

 11.3
 in

 S
equences 1

, 2
, 3

, a
n

d
 4. Interestingly,

S
equence 6 ends abruptly at K

s _ 13.7 (S
equence 5 is artificially cut o_ at K

s =
 14.5). T

here is no feature in the “deep” LM
C

 colorm
agnitude

diagram
 (N

ikolaev &
 W

einberg 2000) associated w
ith this position, or w

ith the bottom
 of the first four sequences. T

he di_erence in the low
-

lum
inosity cuto_ of S

equence 6 com
pared w

ith the first four sequences, as w
ell as the lack of a bum

p in the lum
inosity function at K

s _ 11.3

in
 S

e
q

u
e

n
ce

 6
, su

g
g

e
sts th

a
t th

e
 va

ria
b

ility is ca
u

se
d

 b
y a

 d
i_

e
re

n
t m

e
ch

a
n

ism
 th

a
n

 th
e

 ra
d

ia
l p

u
lsa

tio
n

 m
o

d
e

s p
ro

p
o

se
d

 to
 explain

S
equences 1, 2, 3, and 4.

3.3. C
om

parisons to T
heory

E
xp

la
n

a
tio

n
s o

f th
e

 stru
ctu

re
 in

 
the 

period
lu

m
in

o
sity d

ia
g

ra
m

 o
fte

n
 in

vo
ke

 ra
d

ia
l p

u
lsa

tio
n

s, w
ith

 p
a

ra
lle

l se
q

u
e

n
ce

s indicating

populations of overtone pulsators. W
e have plotted the linear, radial, non

adiabatic pulsation m
odels of W

ood &
 S

ebo (1996) w
ith our LM

C



L
P

V
 d

a
ta

 in
 F

ig
u

re
 5

. T
h

ese
 m

o
d

e
ls w

e
re

 fo
rce

d
 to

 fit th
e

 o
b

se
rve

d
 M

ira
 period

lu
m

in
o

sity re
la

tio
n

 o
f F

e
a

st e
t a

l. (1
9

8
9

). N
o

te
 th

a
t the

o
b

se
rve

d
 M

ira
 re

la
tio

n
 lie

s p
re

cise
ly w

h
e

re
 w

e
 se

e
 th

e
 la

rg
e

st a
m

p
litu

d
e

 p
u

lsa
to

rs in
 F

ig
u

re
 2

. S
e

q
u

e
n

ce
s 1

, 2
, 3

, a
n

d
 4

 h
a

ve
 a

ll been

p
re

vio
u

sly a
ttrib

u
te

d
 to

 o
ve

rto
n

e
 p

u
lsa

tio
n

s, b
u

t it is cle
a

r th
a

t S
e

q
u

e
n

ce
 1

 lie
s a

t p
e

rio
d

s th
a

t a
re

 to
o

 sh
o

rt to
 b

e
 d

e
scrib

e
d

 b
y these

m
o

d
e

ls. A
s d

iscu
sse

d
 in

 Ita
 e

t a
l. (2

0
0

4
), th

e
 g

a
p

 b
e

tw
e

e
n

 S
e

q
u

e
n

ce
s 1

 a
n

d
 2

 is a
lso

 d
i_

cu
lt to

 e
xp

la
in

 in
 th

e
 co

n
te

xt o
f o

ve
rtone

pulsations. S
equences 1

 a
n

d
 2

 sh
a

re
 e

ve
ry im

portant feature discussed in
 th

is p
a

p
e

r –
 m

orphology in
 th

e
 color m

agnitude diagram
; their

lum
inosity function; infrared colors; and, to a lesser degree, am

plitudes (see T
able 1). T

he only substantial di_erence betw
een S

equences

1 and 2 seem
s to be their periods, but an explanation using only higher overtone pulsations w

ould have to explain w
hy m

odes that lie in the

gap betw
een the tw

o are preferentially dam
ped.

S
equence 6 w

as originally theorized by W
ood et al. (1999) to be caused by eclipses from

 a dustenshrouded unseen com
panion. T

his
hypothesis required that 

_
 25%

 of A
G

B
 stars exist in sem

i detached binaries. W
ood, O

livier, &
 K

aw
aler (2004) have recently com

pleted an

analysis of four years of echelle data for three G
alactic stars w

ith long secondary periods (exam
ples of w

hich are tabulated in H
ouk (1963)).

A
d

d
itio

n
a

l p
h

o
to

m
e

tric d
a

ta
 fo

r 1
1

1
 sta

rs fro
m

 M
A

C
H

O
 a

llo
w

 th
e

m
 to

 in
ve

stig
a

te
, a

n
d

 ru
le

 o
u

t, e
xp

la
n

a
tio

n
s in

vo
lvin

g
 so

le
ly radial

pulsations, non
radial pulsations, orbiting com

panions, non
spherically sym

m
etric stars, dust obscuration, a

n
d

 chrom
ospheric activity. T

hey

p
ro

p
o

se
 th

a
t th

e
 m

o
st like

ly e
xp

la
n

a
tio

n
 is a

 low
d

e
g

re
e

 g
+

 m
od

e
 in

 a
n

 e
xtra

o
rd

in
a

rily th
ick ra

d
ia

tive
 la

ye
r, w

h
ich

 w
o

u
ld

 a
llo

w
 large

am
plitudes at the stellar surface, com

bined w
ith large

scale star spot activity.

4. C
onclusions and F

uture W
ork

T
h

e
 co

m
b

in
a

tio
n

 o
f o

b
se

rva
tio

n
s o

ve
r a

 lo
n

g
 tim

e
 b

a
se

lin
e

, a
ccu

ra
te

 o
p

tica
l p

h
o

to
m

e
try ex te

n
d

in
g

 b
e

lo
w

 th
e

 tip
 o

f th
e

 R
G

B
, and

2
M

A
S

S
 in

fra
re

d
 pho

to
m

e
try h

a
s a

llo
w

e
d

 u
s to

 p
la

ce
 m

u
ltip

le
 constraints o

n
 th

e
 sta

rs in
h

a
b

itin
g

 e
a

ch
 o

f th
e

 se
q

u
e

n
ce

s o
b

se
rve

d
 in

 the

period
lum

inosity diagram
 of the LM

C
.

. 
•

M
ost of the LP

V
s in this analysis, w

hich com
prises the 52%

 of LM
C

 LP
V

s w
ith w

elldeterm
ined perio

ds, are S
R

a stars or

M
iras. T

he am
plitude criterion (_V

 >
 2.5 for M

iras) used to di_erentiate G
alactic S

R
a and M

ira stars seem
s arbitrary, as S

R
a’s and M

iras
overlap in our diagram

s. S
tars from

 S
equence 6 never have an isolated period, thus m

arking them
 as S

R
b stars.

. 
•

O
ur periodlum

inosity S
equences 1 and 2 both show

 low
 lum

inosity extensions com
prised of R

G
B

 stars, and have A
G

B



stars that are oxygen rich (J _ K
s <

 1.4). A
s discussed in § 2.2 this im

plies that these A
G

B
 stars haven’t yet undergone the third dredge up.

C
om

pared w
ith the significant population of redder (carbon) stars in S

equences 3 and 4 this im
plies that older stars are segregated to the

latter tw
o sequences. T

he populations of young, m
assive A

G
B

 stars in S
equences 1 and 2 that are identified in F

igure 4 (S
ee 3.2) support

this hypothesis.
. 

•
T

he shortest period sequence (S
equence 1) stands out because it is o_set further from

 the next closest sequence than the

others. T
he short periods of S

equence 1 m
ake it di_cult to fit w

ith standard radi al pulsation m
odels.

.  
•

S
equences 5 and 6 tend to follow

 the LM
C

 lum
inosity function m

ore closely than the others, indicating that they are m
ore

nearly draw
n from

 the population of giant stars in the LM
C

. In particular, neither sequence show
s a “bum

p” in its lum
inosity function due to

A
G

B
 stars, unlike S

equences 1, 2, 3, and 4. T
hese characteristics suggest that a di_erent m

echanism
 produces the variability of these

sequences. S
equence 5 is likely populated by eclipsing binary system

s.
. 

•
A

lthough the physical m
echanism

 that causes S
equence 6 is still elusive, there are num

erous constraints on possible

m
odels. T

hese include the ubiquity of m
ultiple periods and the lum

inosity function behavior already discussed. In addition the A
G

B
population in this sequence

exhibits higher am
plitude pulsation o

n
 its shorter period side, opposite w

h
a

t is found fo
r S

equence 4. S
equence 6

 h
a

s a significant

lo
w

 lu
m

in
o

sity co
m

p
o

n
e

n
t th

a
t, co

m
p

a
re

d
 w

ith
 th

e
 R

G
B

 sta
r co

m
p

o
n

e
n

t o
f S

e
q

u
e

n
ce

s 1
, 2

, a
n

d
 3

, is bluer, e
xte

n
d

s to
 low

er

lum
inosity, and is broader in period.
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 cu
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n
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n
a
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g

 th
e

 
_

 20 , 0
0

0
 m

u
ltip

ly p
e

rio
d

ic L
M

C
 L

P
V

s th
a

t a
re

 n
o

t in
clu

d
e

d
 in

 th
e

 p
re

se
n

t sa
m

p
le

, w
ith

 th
e

 g
o

a
l of

understanding th
e

 relationships b
e

tw
e

e
n

 th
e

 period
lu

m
in

o
sity se

q
u

e
n

ce
s a

n
d

 th
e

 p
o

sitio
n

s in
 period

lu
m

in
o

sity sp
a
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 o
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rs a

t va
rio

u
s

stages of their evolution. T
his w
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 us to better analyze how
 these sequences are related.
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F
ig. 1.—

 (top) LM
C

 period
lum

inosity diagram
 show

ing the stars w
ith w

ell determ
ined periods. T

he lum
inosity split at the top of  the R

G
B

 (K
s

=
 12.3 ± 0. 1) is observed in sequences 1, 2, and 3. S

equences 1, 2, 3, 5, and 6 show
 sm

ooth distributions to m
uch low

er lum
inosity.





F
ig. 2.—

 P
eriodLum

inosity diagram
s highlighting stars in seven am

plitude bins (w
ith divisions at B

M
A

C
H

O
 =

 0.07, 0.17, 0.3, 0.7, 1, and 2.5).

T
he background distribution (in gray) is for all of the LM

C
 LP

V
s from

 F
igure 1 and is show

n as a reference. N
ote that the highest am

plitude

stars are the M
ira variables, located on the long period side of S

equence 4.





F
ig. 3.—

 P
eriodLum

inosity diagram
s highlighting stars in five J _ K

s color bins (w
ith divisions at J _ K

s =
 1.1, 1.2, 1.4, and 2). T

he background

distribution (in gray) is for all of the LM
C

 LP
V

s from
 F

igure 1 and is show
n as a reference. N

ote that stars w
ith J _ K

s >
 1 .4 are carbon stars,

and stars w
ith J _ K

s >
 2 are obscured by dust (S

ee 2.2). T
he bluest stars (J _ K

s <
 1. 1) show

 the

§

R
G

B
 populations of the period

lum
inosity sequences.





F
ig. 4.—

 C
olorm

agnitude diagram
s and lum

inosity functions (along the left vertical axes) for each sequence. T
he background distribution in

the colorm
agnitude diagram

 is for the entire M
A

C
H

O
 variable star catalog, w

hereas the background lum
inosity function is for all LM

C
 stars

m
easured by 2M

A
S

S
.(N

ikolaev &
 W

einberg 2000)





F
ig

. 5
.—

 P
eriodlum

inosity diagram
 overlaid w

ith
 th

e
 observed M

ira
 relation o

f F
east e

t a
l. (1989) (dashed line) a

n
d

 th
e

 3
rd

, 2
n

d
, a

n
d

 1st

overtone (respectively, fro
m

 left) m
odels o

f W
o

o
d

 &
 S

e
b

o
 (1996) (solid lines). T

h
e

 fundam
ental m

o
d

e
 o

f th
e

 m
odels w

a
s forced to

 fit the

M
ira relation of F

east et al. (1989).
T

able 1. P
roperties of the P

eriodLum
inosity S

equences

S
equence S

tar C
ount A

m
plitude above T

R
G

B
a below

 T
R

G
B

a M
ean

b M
ax

aT
ip of the R

ed G
iant B

ranch; K
s =

 12.3 ± 0.1 in the LM
C

 (N
ikolaev &

 W
einberg 2000). A

bove the tip of the R
G

B
 the

LP
V

s are all A
G

B
 stars.

bW
e

 a
re

 u
n

a
b

le
 to

 e
stim

a
te

 a
 m

in
im

u
m

 am
plitude o

f pulsation a
s M

A
C

H
O

’s am
plitude fin

d
in

g
 algorithm

 re
p

o
rts zero

am
plitude for noisy or chaotic data (se

e § 2.1).

T
able 2. G

C
V

S
 Long P

eriod V
ariable C

lassification

aa “late” giant specifically indicates a spectral type of M
, C

, S
, M

e, C
e, or S

e. bT
hese

rare types are not represented in our collection of late giants.

1 1337 673 0.11 1.75
2 2780 540 0.17 1.90

3 3967 310 0.34 3.79

4 5009 628 0.77 8.04

5 636 1384 0.28 4.47
6 2163 1802 0.38 5.58

d (days) Amplitude (V) PL
sequence(s)

35 – 1200 ≥ 2.5 < 2.5 4 1,2,3,4

··· 1,2,3,6

ral thousand” _ 1 0.1 – 4

··· ···


